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ANALYSIS OF NONLINEAR PARABOLIC EQUATIONS MODELING
PLASMA DIFFUSION ACROSS A MAGNETIC FIELD

James M. Hyman and Philip Rosenau

ABSTRACT. We analyse the evolutiona:y behavior of the solution of a
pair of coupled quasilinear parabolic equations modeling the diffu-
sion of hecat and mass of a magnetically confined plasma. The solu-
tion's behavior, due to the nonlinear diffusion coefficients,
exhibits many new phenomena. In a short time, the solution
converges into a highly organized symmetric pattern that is almost
completely independent of initial data. The asymptotic aynamics
then become very simple and take place in a finite dimensional
space. These conclusions are backed by extensive numerical

experimentation.

1. INTRODUCTION
We study the asymptotic behavior of a plasma slowly diffusing across a

strong magnetic field.s-a'lz’17

In the initial value problem, the plasma has
compact support and diffuses into the surrounding vacuum. In the initial
boundary <value problem, the plasma is confined within a fipice domain and
convective boundary conditions are imposed. Both models are mathematical
idealizations of a more complex physical situation, nevertheless they provide
theoretical insight to the dynamics of a plasma heat and mass diffusion.

In past studies, the decoupled problems for the diffusion of particles in
an (essentially) isothermal plasmaa-a and the diffusion of heat in a

stotionary plas.mal'la'18

have been analyzed. The coupling of these two

processes is the source of many new phenomena that are not present in a single
: 15

diffusion equation.

The equations of motion we will study are

F’t (Dlpx)x ] (ll)

"o
1

= (pDpT, ), + (TDyp.), (1b)



o. B.
where Di = doxp Lp 1, i=1,2, P is the plasma pressure, p is the density, T
is ionic temperature, assumed to be equal to that of the electrons, and

P = pT. The initial data is specified over a bounded domain

p(x,0) = po(x) , P(x,0) = Po(x) , X € (-x°,+xo) . (2)

The divergence form of Eqs. (1) guarantee that no additional energy or
mass is added (or subtracted) oafter the process is initialized. Ao

alterpative form of (1b) -an be obtained for T,

th = (pDZTx)x + (Dlpx)Tx . (1c)

This form reveals the convective nature of second term on the right hand side
of (1b) in a diffusive disguise. The rapid convection of temperature down the
density gradients is a dominate force in the asymptotic behavior of the

solution.

2. INITIAL VALUE PROBIEM

We first construct a self-similar solution of Eqs. 1) for x ¢ (-®,®) and

P (x) =M 8(x) , P (x) =E6(x) . (3)

where 6(x) is the Dirac delta function. The apnropriate self-similar solution

to (3) satisfies

1/(2"‘01)
P(x,t) = p(x,)E_ /M, plx,t) = £({)/¢ (4)
where
oy 1/(ﬂ1+2)
L= x/l0M, v ]
and

2 2 1/a,
£(t) = lay(bg - £ )/ (204 + 4)]

if ¢ s {f and £({) = 0 otherwise.

Note that the position of the diffusing front Cf depends only on the
total mass M of the system and a;. It follows from (5) that the self-similar
solution dascribes an isothermally diffusing plasma with T = Eo/Mo'



Out of the many group invariant solutiopms, the one presented has been
selected because of its key role in the late-time evolution of solutions with
more complicated initial data. That is, if the self-similar solution shares

the same wass Ho and energy EO as another initial value problem,

X X

- o - o
M = . J po(x)dx , Eo = . J Po(x)dx , (5)
o o

then irrespective of the initial distribution of the plasma, the self-similar
solution is the leadinz term in the far-field description of the original
problem. This behavior is a natural generalization of single equation case.

Since we have not yet obtained a rigorous proof of the attractive nature
of the self-similar solution, we performed a series of numerical experiments
to confirm this property.

The isothermal nature of the asymptotic solution dominates so strongly
that the specific form of the second diffusion coefficlent 1s of no importunce
in this stage of the problem. A typical rapid t.ansition to the self-similar
regime is shown in Figure 1. After the initial transients, the plasma is
isothermal, Eq. (1b) merely duplicates Eq. (la), and the solution dynamics is

almost identical to the single diffusion equation case.

Fig 1. The initisl transient solution c¢f Eqs. (1) for oy = %, B; = %, a3 =1,
Ba =1, doy =1, and dgg = 5. The initial ccnditions and solution are
symmetric about the origin.

Previously,la it was shown that if a finite mass Ho is distributed over

the whole space, then the thermal diffusion as given by

P (X)T, = lA(T)]xx



leads to the isothermalization of the medium if A satisfies A(0) = 0,
A" (0) > 0 and A°(T) > 0 for T > 0. That is,

T(x,t) + T, = _mf’ P, (X)T(x,0)dx/H_

as might be anticipated on the basis of physical considerations. The
diffusion of heat in a finite mass medium results in isothermalization of the

medium, irrespective of how the mass is distributed.

3. INITIAL BOUNDARY VALUE PROBLEMS
3.1 The Reduced Problem.

In order to analyse the behavior of the solution of the initial boundary
value problem, we first drop the convective term in (lc). Later this term
will be restored and its impact evaluated. Thus for the time being, we

consider the evolution of

ay By _
P = [D‘(p’T)px]x ; Dy =do; p T ; (oa)
az B
pT, = [Pnz(P.T)Tx]x ; Dy =dg2p T ) (6b)
and x € [-1,1]. We prescribe initial dats for density and temperature

together with homogenous convective boundary conditions

ppthp=0 , T 2hT=0 atx=t1 . (1)

These convective boundary conditions are physically more relevant aad
mathematically more tractable than Dirchiet becundarv conditions (h = @),

As in the Cauchy problem, the asymptotic shape of the solution of
Eqs. (6) is simple and can be easily classified. The solution evolves very
quickly toward a universal diffusion mode which is almost independent of
initial data. For this case, however, the highly organized diffusion pattern
is mathematically represented by s time-space separable solution. Similar
separable solutions are known before to play a key role in the evolution of
the solution to a single nonlinear diffusion equationl’s'a'lé.

The analysis of these separable solutions is the centrsl theme of this
section. While such solutions are special cases because they must satisfy
special initial data, they atfrnct all initial data and hence play the key

role in the asymptotic stage of problems with arbitrary initial data.



Although rigorously we can prove this proposition only for a subclass of the
considered problem, extensive numerical experimentation has been used to give
strong credence to them being global attractors.

Inserting the separable forms

p(x,t) = ¢, (t)N(x) , T(x,t) = d2(t)P(x) , (8)

into Eqs. (6a) and ((b) leads to the fallowing conditions

. a;+1 B,
63 = -A1b, 62 i Ay 20 (9a)
) o2 Potl
62 = -A20; o2 ; A 20 (9b)
a; B
d 1 Pl gN
dOl a; N ] E; G AIN =0 H (lOa)
as+l B
d 2 2 4q
doa N ¥ G rAN=O (10b)

and the spatial part of Eq. (7).

The relevant cases of the first integrals of motion for Eqs. (9) are

I. oy #0a2 , By #B2 ,

A Bi1-B2 A2 ay=ay :
— $— = Cy 11
B2 - B b2 o = a4 1 v o (11a

II. a=a, =0, , P =H; =B2 ,

Ay/Ag
¢, = (¢2/Tp) ; (11b)

vwhere (g, pog, and Tg are constants.

Even though Case II is degenerate, it is of considerable practical
interest in many applicatisns where D,/D, is assumed to be constant (such as
for the diffusion of a fully coliisional plasma across a magnetic field).

Integration of Eq. (9) yields

=Ay /0
¢l(t) = [Tg(to + Qt)] ' , 1 = Ald + Azﬂ ’ (12)



where t, is a constant. According to whether Q 1is positive, zero, or
negative, we refer to the solution ¢; as decaying slowly (algebraic decay),
exponentially, or fast (¢, vanishes in a finite time).

The time dependences of the sclutions in Case I is given implicitly as

-1/a, -1/B2
v1 = (o + Aoy b) » 02 = (19 + AgBaT) , (13a)

where {o and 1y are constants of integration and

Bi1 ap
dt = dt/op = dv/¢, (13b)

defines { and t, the stretched time coordinates. Of course, §° and T_ are not
independent, since they are related by Eq. (lla).

Unless either P, or a, vanishes, T may be found only after the
integration of Egs. (13b) and (1la). Though the resulting Euler type
integrals can be solved only implicitly, ¢; and ¢, can be evaluated
asymptotically to determine the large time behavior. The results of this

analysis are summarized in Fig. 2.

y =0p - da

¢;(t) ¢+ 0 ¢4(t) » const > 0
62(t) v O ¢2(t) ¢+ 0
(Dy/Dg)~0(1)  II I Co < 9, (D4/D5)+0
111 v x =By - B2
¢,(t) + 0 Co <0 => ¢,(t) ¢+ 0, ¢5(t) » const > 0O
¢2(t) » const > 0 Co =0 => ¢,(t) + 0, ¢a(t) ¢+ 0
Co > 0, (D2/Dy)40 Co >0 => ¢y(t) » const > 0, ¢p(t) + O

Fig. 2. Solution states of Eqs. (6) in the (x,y) = (B1-B2,0y~03) plane. 1In
the first and the third quadrant, the integration constant C_ must have a
definite sign, but its value is irrelavant for solutions £n the second
quadrant, and crucial in the fourth quadrant. Everywhere, but on the A =
agf; - a;B2 = 0 line, the decsy is algebraic.

We can find imnportant features of the solution's temporal part directly
from the first integrals of motion. In the (x, y) = (B;-Ba,u;=d3) plane in
Fig. 2, the two possible lines where A = 01; - Bl; = 0 separate regimes of



fast and slow diffusion (the quantifier "fast'" means that the process is
extinguished within a finite time). The behavior of the temporal part of the
solution dramatically changes in each of the four quadrants. In general, only
in the second quadrant do both ¢;(t) and ¢,(t) decay to zero, elsewhere one of
the ¢'s converges to a positive constant (see 1la).

For large t, the asymptotic form of ¢i(t) in the second quadrant is given
by

w.
6, (1) = (L +Muw.t) Yi=1,2 (14a)

where
wy = (B2=B1)/8 , wy = (03-02)/A ; A= agfy - o,y . (14b)

The decay to zero is algebraic as described by Eq. (14), everywhere but on the
lines where A is zero, the solutinn decay is exponential.

The w; and wy which give the temporal decay rates are defired a priori,
and are independent of the symmetry in which our problem is considered. This
is an essential feature of the nonlinear diffusion which has no counterpart in
the linear theory.

To obtain the main features of the temporal behavior in the other
quadrants one can use Eqs. (9) along with the fact that the first integral of
motion (1la) forces one of the ¢i’s to approach a non-zero constant everywhere

but in the csecond quadrant. That is, first agsume that

9; = ¢30 = const. > 0 (15a)

then from (9b) we have

-1/B2 o
(to + §,¢) » 6, = AzB2dyo . (15h)

n

62

Inserting (15b) into (9a) we get a correction to ¢,, and « consistency
relation B; > B, for (15a) to hold.

Proceeding in a similar fashion with ¢, we assume

¢2 = 620 = const. > 0 (16)



then from (93) we have

-1/a, B2
61 = (to + 64t) » 65 = M01020 (17a)

which in turn, when inserted into (9b) yields

-d; -1/B3
[a; - 22 (to + GBt) ] , (17b)

n

¢2

d; (ag =~ ay)/a2 , a, = const. > 0 ,

and a consistency relation, dy > o;. In the fourth quadrant either ¢; or ¢,
may tend to a constant.

The rate of the temporal decay, is intimely related to the role played by
the separation constants A, and A,. To clarify this point consider first the
case when Eq. (6) i~ a linear system whose solution decays as exp (-Ait),
where A; and A, play the role of eigenvalues in Egs. (10). In a noulinear
diffusive system, the Ai are nonessential ccanstants in Eqs. (10) whose values
depend on the normalization of ¢ and N. Indeed, suppose that ((0) = A and
N{0) = B with $ and N being the solutions with eigenvalues Xl and Xz. For any
Yo, No > 0, we then find that ¢ = ¢0$ and N = Noﬁ are also solutions with

X+ X, No lwo 1, i =1,2. Alternatively, let A = azﬁ - a p, then choosing
1 1 2

ay _ Oy B2 By
8 CNA =X, T (18)

normalizes both A; and A, to one, with {(0) = A¢° and N(0) = Bﬁo.

Thus the A's may be reshuffled from the spatial into the temporary part
of the solution and are related to the amplitude of the diffusion mode (e.g.,
see Eqs. (14)). This relationship is fundamentally different from the linear
case.

An exception occurs when A vanishes. The linear case iy a trivial
example. In the nonbanal case, where a;/ag = B;/By # 0 (or ®), only one A\ can
be eliminated from Eqs. (10); the other A remains as an essential parameter.

Iz this case, the solutions to Eqs. (6) are invariant with respect to the
By a
group of shifts; T+ AT, p+» A /p , and t » t + t, If A = exp(-Ato), this



this invariance sllows solutions of tiae form

At 'Blkt/ai
T=ze Y(x) , p=e N(x) , (19)

where A is an eigenvalue that must be determined from the global existence
conditions of the separable solution. (A similar situation arises in the
problem of imploding shock waves, where the A is determined uniquely by
2,18

)

A physically interesting case arises when D,/D, is constant and (Case II,

requiring the existence of the self-similar solutiom in the large.

Eq. (11b)). Again (Ay;/Ap) plays the role of an eigenvalue with the exponen-
tial case being a transit solution between fast and slowly diffusing regimes.
Here, both the mass and energy decay algebraically at a rate Ai/Q, i=1, 2.
(See Eqs. (11b) and (12)) that must be found by solving Eqs. (10a) and (10b).

For given convective boundary condition coefficients h; and hp, the

following homologous property:

Az d01 /(Al doz) = Ko (20)

means that A;/A, has to be only measured for one pair of dg; and dop, and then
it may be calculated for any other dg; and dgs. Particularly, if af < 0, such
as in the fully collisional plasma case wherein a; = ¢ = 1 and B; = By = -%,
by changing the ratio of dgy/dp2 we may transit from fast into a slow
diffusion regime (or vice versa).

Having delineated the temporal part of the solution, we still need to
interpret the fact that in a diffusive process when o and B are rot in the
second quadrant, one of the solutions (i.e., either ¢; or ¢,) does not decay
to zero. The time evolution of a particular example is shown in Fig. 3. This
behavior is very different from what is expected from a single diffusion
equation.

To wunderstand the principle mechanism involved in this somewhat
unexpected process, consider the case where B, is zero, Eqs. (6a) and (6b)
decouple and can be solved separately. The separable solutinn of Eq. (6a) is

1,3,14

a global attractor and represents a universal mode of diffusion with the

temporal behavior

‘1/01
0,(t) = (tg + Aya,t) , to = comst. ; (21)



Figure 3. For this initial data (symmetric about the origin) and these
parameters in the first quadrant, oy, =1, o0 =%, B, =1, By =4,
doy =1, dg2 =5, h=-10 the decay and diffusion of mass under Eqs. (6)
is inhibited by the rapid decay of heat.
and ¢,(t) is given by Eq. (1la). If o; is positive, the solution asymptoti=
cally converges to the separable form. In numerical tests, the general
solution becomes indistinguishable from the separable one after a relative
short time., The constant t, devends upon the initial data. For a single
equation ty is important only in the case of fast diffusion when ty/(A;lal,y)
defines the finite extinction time of the process.
Although ¢2(t) is known from Eq. (lla), analysing the solntion of
Eq. (6b) directly is instructive. Using the asymptotic form of p, known for
Eq. (6a), we can treat Eq. (6b) as a separate equation in T with a variable
diffusion coefficieat. Numerically, we have found that the solution of this
equation rapidly converges to this asymptotic separable form. With this

expectation, we substitute p = ¢,(t)N(x) and obtain

b c2tl  PBo
N(x)¢ Tt = N(x)Tt = (N T Tx) x (22)
where
t 02
1=/ 6 (n)dn . (23)
0

When 0 < N < ®, Eq. (22) is a standard diffusion equation, similar to Eq. (6a)
with B, = 0, but measured in T units.



If f; =0 and a; > @y, then T+ as t -+ ®  For large T-time,

temperature converg~s; to the separable solutinsa T = ¢p(t) ¢ (x) with

o -1/B2
¢2(t) = ¢2[(T(t)] = (10 *+ A2B271) , (24)

and again Ty is an unknown function of the initial conditions.

I1f By = 0 and ay > ay the integral in Eq. (23) couv..ges, and

1-a,/a,

T = tD[1 = (1 + Ajagt/tg) ], (25a)

wvhere

1-ag /04
) = to /A (og = ag)] . (25b)

Thus, T * I, as t o If 1t is borunded, the time n<eded to attain the
separable solution is not available, and ¢,(t + ®) converges to a positive
constant. Thus, while p(x,t » ®) decays to zero, T(x,t *» ») = T(x,tD) is a
positive nonzero steady state.

When this is the case, the avymptotic temperature will remember its
initial conditions. If, in addition, P, = B = 0, thec this follows at once
by noting T(x,t) = 3 aj . expi-éjt(t)]wj(x). Here Gj and ¢j are the jth

vigenvalue and eigenfunction, respectively. Using Eqs. (25), we can sze from

T(x, t »®) > T(x, 1) = & a  exp(-6,T ), (26)

that none of the harmonics initially present vanish as t -+ ®,
For the non-linear case we show this property by taking y(x), the spatial
couaterpart of (22), as the initial condition and perturbing it. The

perturbed snlution of Eq. (22) is

T(x, t) = ¢(t)e(x) [1 + u(x, t)} . (27)

If u=w(t) V(x), then § is the first eigenfunction of V. Again w(®) =
w(tD) > 0 and u cannot return to ¢o¥.

Thus, in the third quadrant where B, > By, uz > a;, the diffusion of heat
1s 3slways inhibited by the fust diffusion of density. In thz i»urth quadrant,
depending on the iaitial data and the values of a, and Bi' either temperature

i
or density will inhibit the diffusion of the other.



Numerical experiments have shown that usually the density decays faster and
inhibits the diffusion of heat, as in the third quadrant. If u,; is negative,
the process always terminates on the fast scale. If a; is positive, the
process is fast if the temperature vanishes and the plasma becomes cold within
a finite time, but it is slow if the density decays to zero.

When B, # 0, the asymptotic analysis of tne temporal part is more tedious
but confirms the above conclusions. However, for B; # 0 we were unable to
analytically demonstrate the attractive nature of the separable solution. It
is at this point tha® an extensive num~cical experimentation was used covering
all of the tour quadrants of the (;, i) plane to ensure the attractive nature
of the separable solution. This leads us to believe that the lack of rigorous
mathematical proof is rather a technical than a fundamental obstacle.
Moreoever if tD < ®, unlike the semicoupled case, either both T and p come
close toc their ideal counterparts ') and N or neither comes close, as T * tD'
In practice howvever, for the many cases considered numerically, T and p
approach their attracting separable solutions very quickly, long before the
process '"runs out of time." That is, by the time the diffusior coefficient

becomes suppressed, the process is extremely close to its universal mode.

Fig. 4.1a. Density, p(0,0) = 10. Fig. 4.1b. Temperature, T(0,0) = 1.

Fig. 4.2a. Density, p(0,0) = 1. Fig. 4.2b. Temperature, T(0,0) = 20.

Fig. 4. Symmetric solutions of the diagonal case, Eq. (6), with parameters in
the fourth quadrant, o; = -k, o, = -k. By = h, By = -%, do; =1, do2 =5,
h = =10, either the density or the temperature may decay to zero in a
finite time, leaving the other s. randed.



In Figs. 4, we show two examples with parameters in the fourth quadrant
of how either temperature or density diffusion becomes depressed. The initial
conditions and solution are shown for a massive relatively cold plasma where
temperature vanishes in a finite time (Fig. 4.1), and a hot relatively tenuous
plasma, where density decays to zero in a finite time (Fig. 4.2). In Fig. 4.2
the maximum initial temperature is T(0.0) = 20. If T(0,0,) = 10 then both
components decay faster than exponentially and race toward zero between p and
T ends as it does in 4.2 but with the final temperature several orders of

magnitude smaller.

3.2 The Tensorial Case.

We are now iz the position to discuss initial boundary value problems for
the tensorial system Eqs. (1). The evoluticn of the temperature and the
effect of the convective term in (lc) is more easily understood by working
with this equation rather than (1b).

Substituting yields the separable form (8) into (lc) yields

1+G2

B2 a; B,
do2 52 (N Y %%) +doy S(e) (N ¥ %%) %% + A Ny =0
(28)
where
ay-az PBy-B2
S(t) = ¢, 2

Compare this equation with (10b). The status of (28) depends critically on
the behavior of S(t). In turn, the behavior of S(t) critically depends on
which quadrant of the (;,;) plane the parameters reside. The possible

behaviors are:

1st quadrant: S(t) ¢+ O
2nd guadrant: S(t) = 0(1)
3rd quadrant: S(t) »

4th quadrant: 1if {¢2

+ const., S,(t) + =
In the first quadrant, asymptotically the convective term becomes
completely suppressed and the shape of both N and ¥ remain unaffected by the

convective part. In the s . quadrant, S(t) is a corstant which modifies



the shape of the eigenfunctions y and N. Otherwise the characterization of
the solution in this quadrant does nct change.

S(t) has the most dramatic impact in the third quadrant. Here, S(t) will
grow indefinitely unless the temperature becomes isnthermal. But, the
boundary conditions for T in Eqs. (7) prevent this if h, # 0. Asymptotically,
this difficulty is resolved by T converging to a constant everywhere but near
the boundary, where an ever thinning boundary layer will be present. A
numerical example of such a case is shown in Fig. 5 and should be compared to
the diagonal tensor case in Fig. 4. Since the temperature is nearly constant
everywhere except for a small boundary layer, the dynamics of the problem are

confined primarily to the density Eq. (1la).

Fig. 5.1a. Density, p(0,0) = 10. Fig. 5.1b. Temperature, T(0,0) = 1.

Fig. 5.2a. Density, p(0,0) = 1. Fig. 5.2b. Temperature, T(0,0) = 10.

Fig. 5. Symmetric solutions of tensorial case, Eqs. (1), with parameters in
the fourth quadrant, oy = -%, ap = =k, B, = h, e = -k, do; =1, dgg =5,

b = -10 either the density or the temperature may decay to zero in a
finite time, leaving the other stranded.

In the fourth quadrant the situation is, as in Egqs. (6), either an
extension of the first or of the third quadriuc.

Finally, note that if a; = a, snd B; = Bz, S(t) = 0(1) and, as in the
diagonal case, the decay rate is unknown a priori and the selected pattern

depends upon the initial data.



4. NUMERICAL CALCULATIONS

Several hundred numerical experiments were performed to support the
claims made about the stability and self-rimilarity of the asymptotic
solutions. In the calculations, we used second-, fourth- and sixth-order
centered finite difference approximations11 cn grids ranging from 20 to 200
mesh points on a CRAY X-MP computer. The boundary conditions were
incorporated by extrapolating the solution to fictitious points outside the

9

region where the solution was being integrated. The cubic extrapolant

satisfied both the boundary conditions and the differential equation at the

boundary. The soiution was integrated in time usiang a variable order -

variable time step method of lines code, MOLID,10

6

error tolerance betweeu 10-4 to 10 ° per unit time step. Many problems were

recalculated several times with different order finite difference approxi-

that retained an absolute

mations in space, grid resolution and time truncation error criteria to imsure

the numerical solutions were converged wit':'n an acceptable accuracy.

5. SUMMARY

The dynamics of the highly coupled quasilinear equations (1), 1is
surprisingly simple. After a relatively short transit time the dynami~cs takes
place in a finite dimensional space and is almest ind2pendent of the choice of
initial data. In the initial value problem the medium quickly becomes
izothermal and the dynamics are confined to mass diffusion. The initial
boundary value problem offers a much wider variety of phenomena, all of which
depends on the choice of the nonlinear diffusion coefficients D; and Dj.
Amung the phenomena which do not have a counterpart in the single diffusion
equation case are:

1) The diffusion is at an unknown a priori rate and th- density and
temperature are similarity solutions of the second kind.

2) The diftusion rate of one solution component vanishes in favor of the
other. The faster decaying solution comporent is predetermined in
quadrants TI and III of the (B;-Pa,0y-02) plane.

3) In quadrant IV the decay is reminiscent of pattern selection where the
winning solution component depends upon the initial data; which Jn
turn decides which diffusion pattern is chosen.

Aithough we have extensive npumerical calculations, the mathematical

status of the problem is that we know everything (almost) about the evolution
of Eqs. (1) but can prove nothing (almost).
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